

MEDICAL CENTER

Proteogenomic Characterization of Muscle Invasive Bladder Cancer to Identify Mechanisms of Resistance and Targets for Therapy

Seth P. Lerner, MD, FACS
Professor, Scott Department of Urology
Beth and Dave Swalm Chair in Urologic Oncology
Baylor College of Medicine

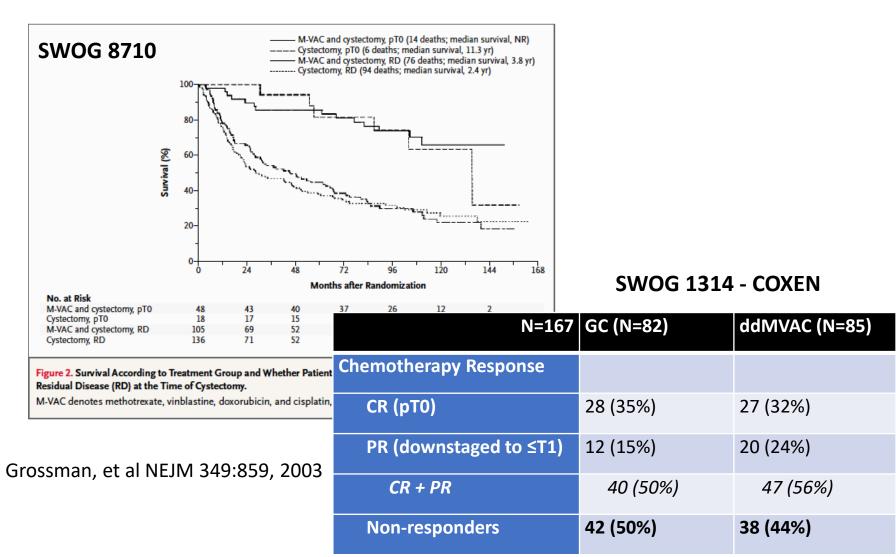
Disclosures

- Clinical trials
 - Endo, FKD, JBL (SWOG), Roche/Genentech (SWOG), UroGen, Viventia
- Advisory Board/Consultant
 - Anchiano Therapeutics, Ferring, Genentech,
 QED Therapeutics, UroGen, Vaxiion
- Honoraria
 - Dava Oncology, MSD Korea, Nucleix

Innovation Award

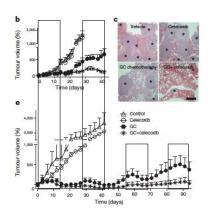
- Bladder Cancer Research Network (BCRN)
- BCAN
- "Exceptionally novel and creative with great potential to produce breakthroughs in our understanding of the management of bladder cancer"
 - High-risk and high-reward
- Additional funding:
 - CPRIT PDX Pilot project
 - Philanthropy WES, RNAseq

The Team

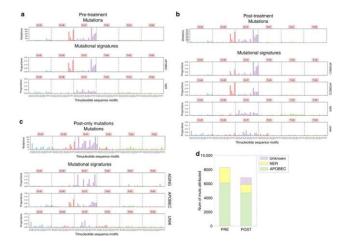

- Proteomics Core
 - Anna Malovanaya, Hamssika
 Chandrasekaran, Sung Jung
- Ellis group
 - Mathew Ellis, Bing Zhang, Beom-Jun Kim (KiP)
 - David Wheeler (WES and RNAseq)
- Genome Center
 - Marie-Claude Gingras
- Mouse PDX
 - Keith Chan, Lacey Dobrolecki,
 Michael Lewis (PI Core)
- CAM PDX
 - Hugo Vilanueva, Mariana
 Vilanueva, Ravi Pathak, Andrew
 Sikora (PI Core)

- Pathology/HTAP
 - Mike Ittman, Patricia Castro
- Urology
 - Karoline Kremers (project mgr),
 Weiguo Jian, Amanda Watters
- Collaborators (Biospecimens)
 - Lars Dyrskjot (Aarhus, Denmark)
 - Kurshid Guru (Roswell Park)
 - John Taylor (Kansas U)
 - Joshua Meeks (Northwestern)
- Mouse PDX
 - Chong-Xian Pan (UC Davis)

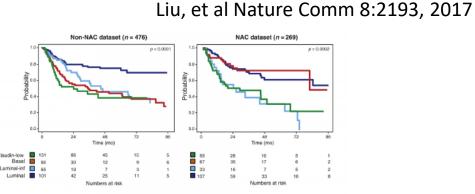
Rationale – MIBC Integrated Therapy


- MIBC
 - L1 evidence for cisplatin-based NAC
 - No evidence of non-cisplatin-based NAC
- RR in cisplatin-based NAC
 - 50% path response
 - 40% pT0
 - Not a validated endpoint
 - OS absolute margin of benefit < 10%
- Unmet need
 - If 50% eligible and 50% of eligible respond then 75% of patients have no effective integrated treatment options supported by L1 evidence.
 - Our treatments fail these patients (DZQ)

Patients with residual muscle invasive cancer following NAC have poor outcomes and there is no standard of care for these patients

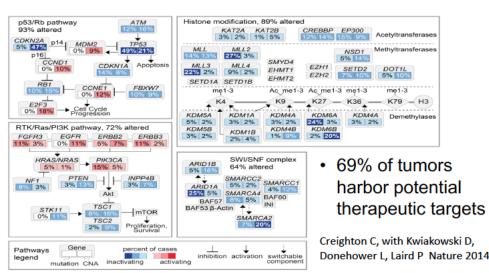

Resistance pathways

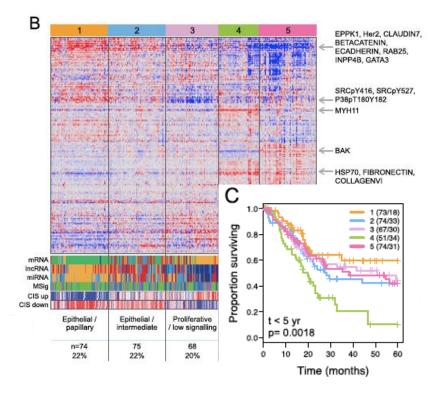
Wound repair


Kurtova, et al Nature 517:209, 2015

Cisplatin resistance signature

Expression subtype

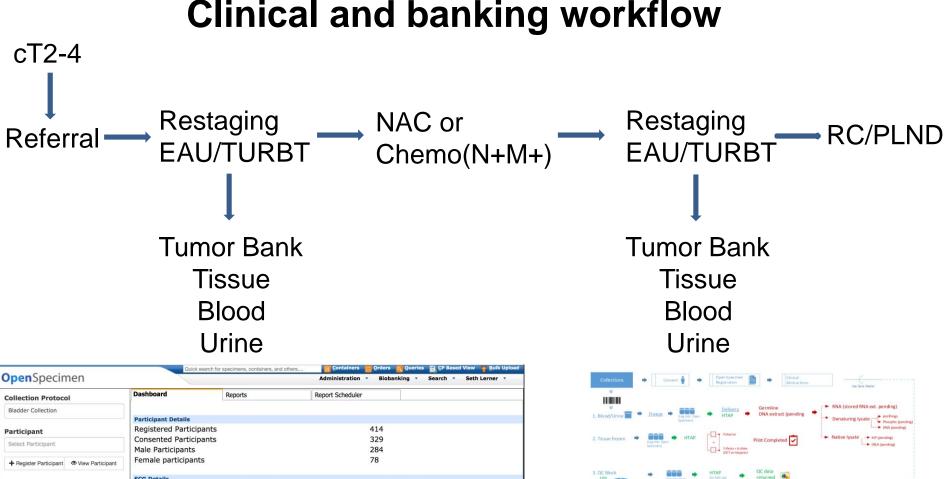

Seiler, et al Eur Urol 72:544, 2017

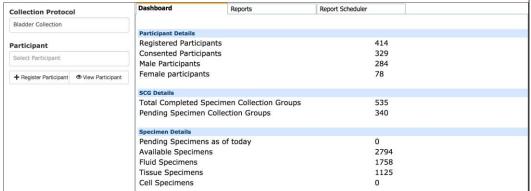

Alternative Integrated Treatment Options

- Immunotherapy
- Chemotherapy/Immunotx
- Targeted therapy/TKI

Altered Pathways in Bladder Cancer: Mutation/CNA

TCGA: RPPA 208 antibodies



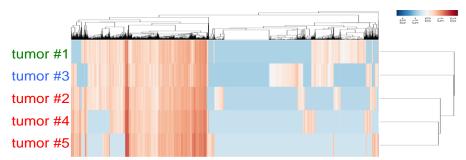

Hypothesis

 Integrated analysis of proteomics and genomics of primary muscle invasive bladder cancer (MIBC) and their patientderived xenografts (PDX) will define mechanisms responsible for chemotherapy resistance and identify candidate driver genes leading to the identification of specific targeted therapies for those resistant to the current standard of care.

Biobanking

Clinical and banking workflow

Cohort Annotation


- Target n = 80
- Pre-NAC or pre-Chemotherapy N+/M+
- Fresh tissue from TURBT
 - Prior BCG allowed
 - No prior systemic therapy
- QC GU pathologist
- Minimum >50% tumor cellularity
- Urothelial, NOS
- Variants: Small cell, plasmacytoid, SCCa

Tissue Source Sites

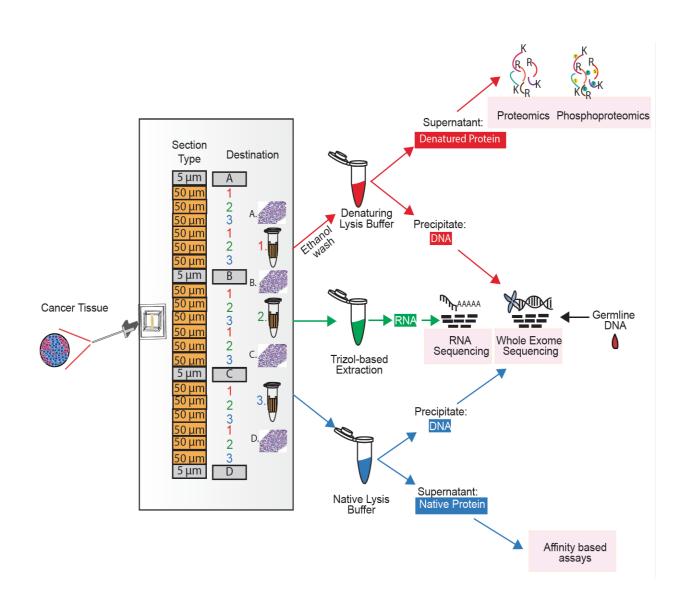
- BCM
- Aarhus (Lars Dyrskjot)
- Buffalo (Khurshid Guru)
- University of Kansas (John Taylor)
- Northwestern (Josh Meeks)

Preliminary Data

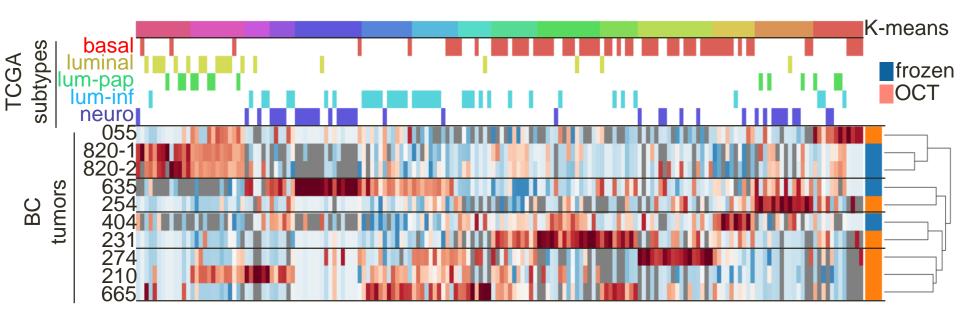
(A) Proteomics Expression Clusters of 5 Bladder Cancer Samples.

Anna Malovannaya Hamssika Chandrasekaran Sung Jung

(B) DNA and cell cycle biology overexpressed in Tumor #3.


tumor #1					tumor #2					tumor #3						tumor #4					tumor #5									
	4	ste	PS	Ms	AL	JC7	4	bts	PS	Ms	Αl	JC7	4	ste	PS	Ms	AL	IC7	4	ste	PS	SMs	AU	IC7	4	sto	PS	Ms	AU	IC7
Symbol	SS	Per	abs	ratio	abs	ratio	SRA	Per	abs	ratio	abs	ratio	SS	Per	abs	ratio	abs	ratio	SRA	Per	abs	ratio	abs	ratio	SRA	Per	abs	ratio	abs	ratio
HMGA2										1		1		5	22	1000	1035	1000				1		1				1		1
SMC2		1	1							0.001		1		44	69	69	430	1000				0.001		1				0.001		1
SMC4										1		1		46	72	1000	341	1000				1		1				1		1
TYMS										1		1		12	27	1000	335	1000				1		1				1		1
MDC1		4	4							0.001		1		37	56	14	216	1000				0.001		1				0.001		1
NCAPD2										1		1		37	55	1000	212	1000	_			1		1				1		1
CCNB1										1		1		7	8	1000	24.8	1000		1	1	1000	2.5	1000				1		1
RFC4		4	5		2.3			1	1	0.2	0.15	0.07		14	22	4.4	155	67.4		2	2	0.4	0.43	0.19		2	4	8.0	0.21	0.09
MSH6		8	8		12.6			1	1	0.13		0.001		24	39	4.9	252	20		1	1	0.13		0.001		2	2	0.25	0.95	0.08

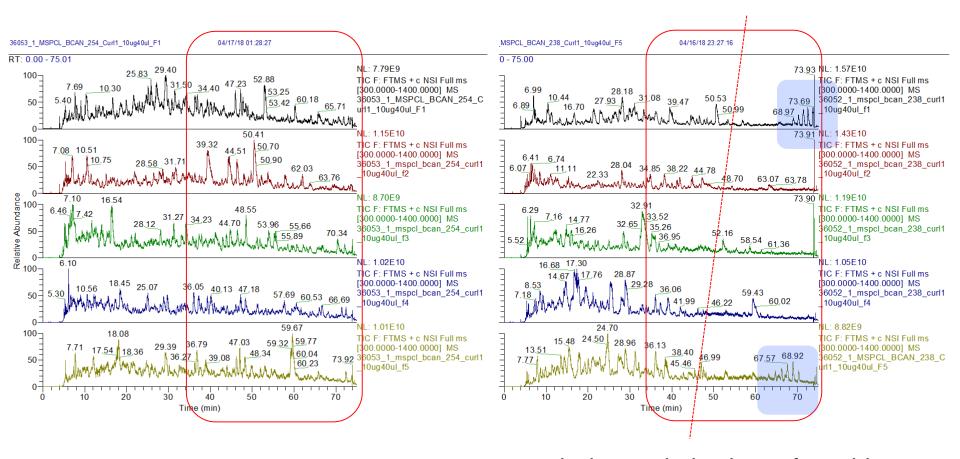
(C) Druggable kinases overexpressed in Tumor #3.


	tumor #1				tumor #2					tumor #3							tumor #4					tumor #5								
	_	22	PS	Ms	AL	JC7		22	PS	Ms	AU	C7		22	PS	Ms	AL	JC7		22	PS	Ms	Al	JC7		22	PS	Ms	AL	JC7
Symbol	SRA	Pep	abs	ratio	abs	ratio	SRA	Pept	abs	ratio	abs	ratio	SRA	Pepts	abs	ratio	abs	ratio	SRA	Pep	abs	ratio	abs	ratio	SRA	Pepts	abs	ratio	abs	ratio
втк		1	1							0.001		- 1		3	4	4	3.5	1000				0.001		1		2	2	2		1
ATR										1		1		2	2	1000	1.3	1000				1		1		1	1	1000		1
AURKA										1		1		1	1	1000	1.2	1000				1		1				1		1
CSF1R										1		1		1	1	1000	0.65	1000				1		1				1		1
CDK6		3	3		2.3			3	4	1.3	16.2	7		7	7	2.3	54.2	23.6		1	1	0.33		0.001		1	3	1		0.001
ABL1		2	2		0.06			1	1	0.5		0.001		4	4	2	1.4	23.3		1	1	0.5	0.56	9.3				0.001		0.001
CDK4		5	6		2.8			3	4	0.67	16	5.7		7	11	1.8	47.1	16.8		1	1	0.17		0.001		3	5	0.83	8.9	3.2
EGFR		7	8		20.8			13	16	2	29.6	1.4		15	23	2.9	88.5	4.3		5	6	0.75	3.1	0.15		4	4	0.5	3.9	0.19
MAP2K1		10	20		63			10	12	0.6	51.2	0.81		13	22	1.1	149	2.4		5	8	0.4	30.7	0.49		6	12	0.6	23.2	0.37
LYN		5	7		48.6			9	11	1.6	29.3	0.6		14	18	2.6	97.1	2		5	5	0.71	7	0.14		5	8	1.1	17.9	0.37

No photos
No social media

Biopsy Trifecta Extraction (BioTExt)

Compared to TCGA subtype signatures


- by total profiles also largely along these lines
- finer heterogeneity evident in proteomics data
- about 50% of samples give much lower recovery numbers why?

good data

Tumor #254

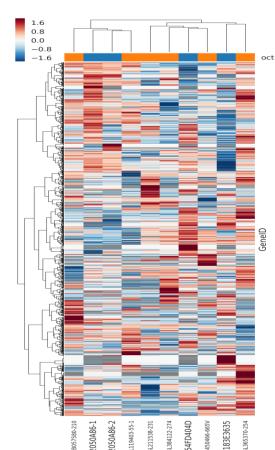
bad data

Tumor #238

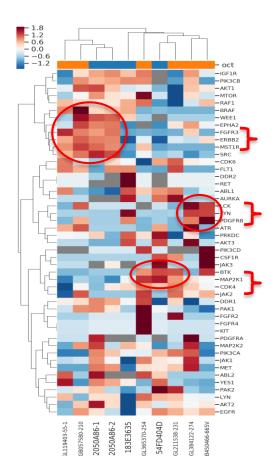
missing a whole class of peptides not fully cleared of OCT

Proteomic Profiling

OCT batch effect


Left: OCT lower observed protein abundances vs

frozen tumor


0.0

Right: After Bioinformatic correction

-0.8 -1.6

Druggable kinases

Multiplexed inhibitor bead <u>Kinome Pull-down</u> (KiP) profiling

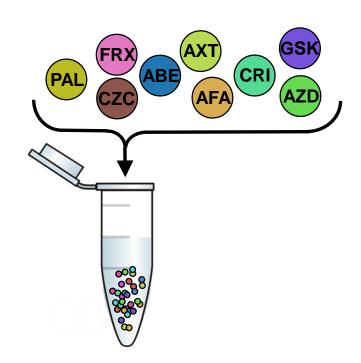
Kinome Pull-down (KiP) with 9 kinase inhibitor-conjugated beads

abemaciclib*: CDK4, CDK6

afatinib*: EGFR, ERBB2

axitinib*: VEGFR, PDGFR, KIT

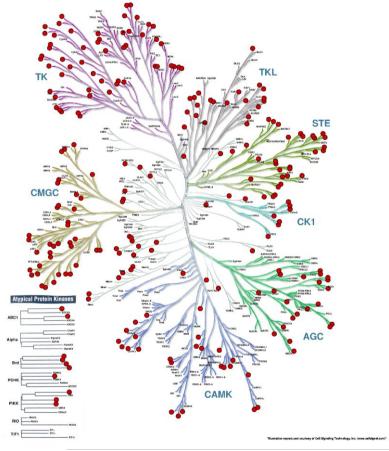
AZD4547: FGFR, VEGFR


Crizotinib: ALK, MET, AXL

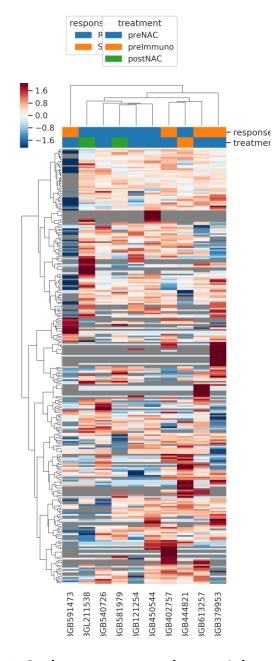
CZC-8004: pan tyrosine kinase

FRAX597*: PAKs

GSK690693: AKTs

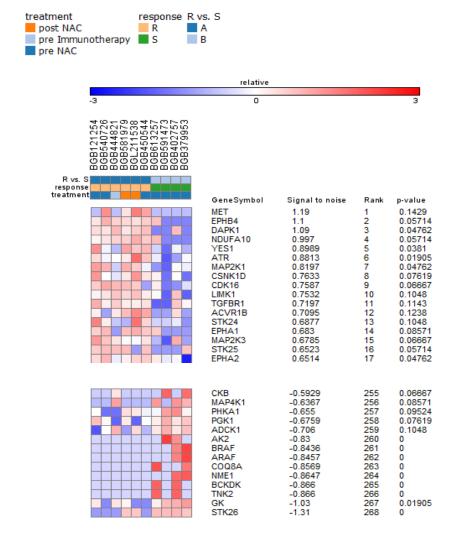

Palbociclib: CDK4, CDK6

The mixture of 9 kinase inhibitor beads is designed to isolate and enrich the kinases with most activity


KiP Breast Cancer

Ellis, Kim unpublished No photo/social media

Table 2. Duplicate PDX (WHIM series) analysis comparing macroscale with microscale input showing high reproducibility and only modest reduction in kinase identification with 25 fold reduction in sample input. **Figure 2.** Broad kinome coverage with a


WHIM number	Macro-scale (500ug)	Micro-scale (20ug)					
Numbers of experiments	47 duplicates from 24 PDX	44 duplicates 22 PDX					
# total kinases (human & mouse)	723	524					
# human kinases	388	285					
# human kinase quantified	382	284					
Average duplicate correlation (range)	0.983 (1.000 to 0.901)	0.975 (0.999 to 0.927)					

 Pre NAC clusters together with similar kinase expression profile

KiP profiling

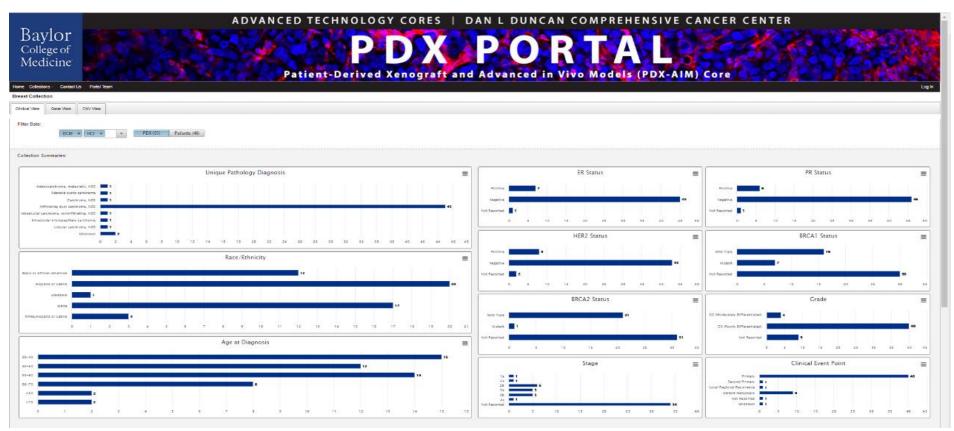
Beom-Jun Kim Ellis lab (BCM)

- Kinase enrichment stratified by chemosensitivity
- DAPK1, YES1, ATR, MAP2K1, and EPHA2 higher in Res
- Sens higher in BRAF, ARAF

PDX - Principles

- Faithfully represent parental human tumor
- Maintain genomic and biologic fidelity and heterogeneity in passage
- Serially passaged x 3: P0 (initial engraftment), P1,P2
- Take rates may vary by subtype
 - Enhanced with Matrigel
- Gender and ethnicity may affect treatment response
- Does the PDX respond to treatment similar to tumor of origin in the patient?
 - Not affected by immunodeficiency of the host (PDX)

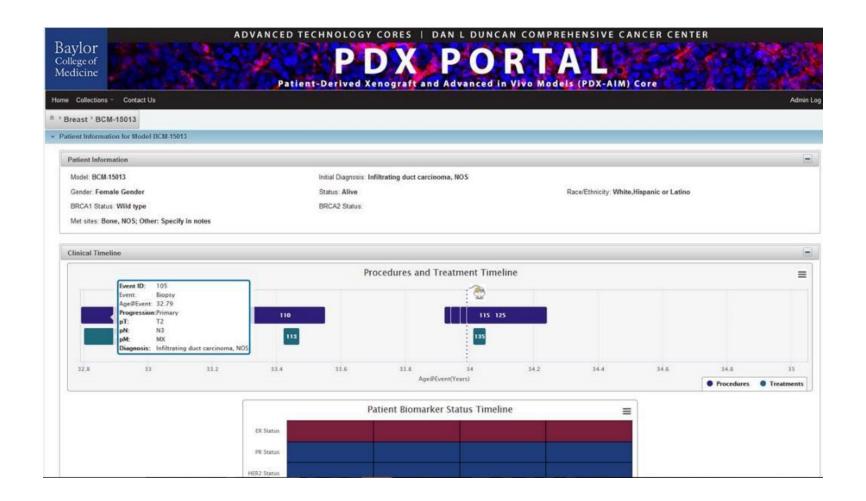
Table 1: Mouse PDXJuly 2017-April 2019 (Chan)Attempts77Engraftment16Ongoing4Viably frozen1No engraftment56May-June 2019 (PDX Core)Attempts10Palpable tumors3Ongoing3Viably frozen4


Mouse PDX

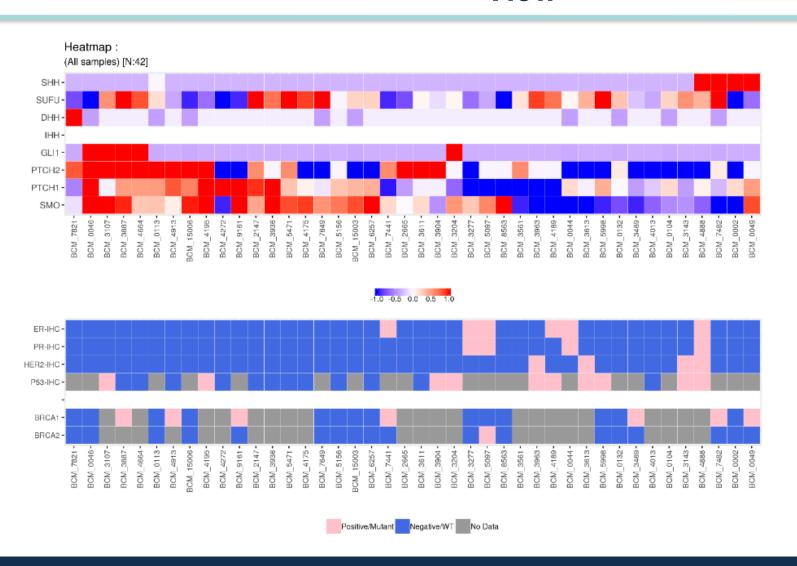
Mouse background

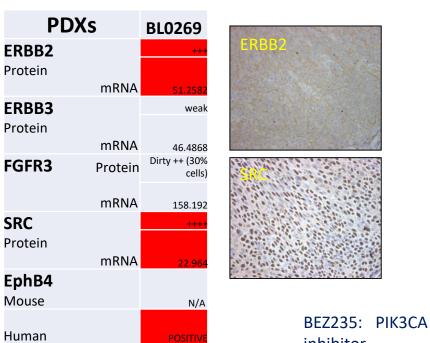
									ChemoXRT	
Gender	Histology	Disease status	Clin Stage	Path stage	NAC	NAC Response	Sens(S) or Res(R)	ChemoXRT	response	Status
M	Urothelial w/50% SCCa	Post chemo	T3N3	pT3bN3	Υ	NR	R	N	na	DOD
М	Small cell NE	Pre-NAC	T2	сТО	Υ	CR	S	Υ	CR	Alive (CIS) NED 19 mos
M	Urothelial	Pre-Chemo	T3bN+	na	Υ	NR	R	N	na	Alive with disease
M	Urothelial w/15% SCCa	Pre-chemoXRT	T3b	na	N	na	na	Υ	NR	Alive with dx 11 mos
F	Urothelial	No treatment	T3b	na	N	na	na	N	na	DOD
F	Urothelial w/sarcoma	No treatment	T3bN3M1	na	N	na	na	N	na	DOD
M	Urothelial	Pre-RC	T3bN2	pT3aN0	N	na	na	N	na	Alive; NED 4 mos
M	Urothelial	Post-Pembro; no RC	T2N+	na	N	na	na	N	na	DOD
M	Urothelial	Pre-chemo for M1	T2N3M1	na	Υ	NR	R	N	na	Progressed; AWD
M	Urothelial w/90% SCCa	No treatment	T2bM1	na	N	na	na	N	na	DOD
F	Urothelial	Pre-chemoXRT	T2	na	N	na	na	Υ	pending	Dx status pending
M	Urothelial	Pre-BCG	T1	na	N	na	na	N	na	Alive NED 8 mos
M	Urothelial	Post-chemo; pre-RC	T3	pT4aN2	Υ	NR	R	N	na	Alive; NED 5 mos
M	Urothelial w/focal SCCa	Treated one cycle NAC	T3bN2	na	Υ	NR	R	N	na	DOD
										Alive; Dx status

BCM PDX Portal: Collection Summary Page

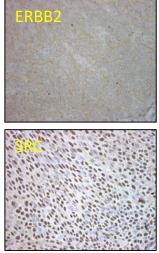

Heidi Dowst Apollo McOwiti Kerri Zheng Ram Srinivasan John Landua Lacey Dobrolecki Alaina Lewis Christina Sallas Ana Hernandez-Herra Alphi Kuriakose

Chen Huang Bing Zhang

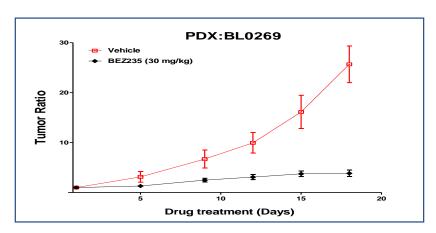

BCM PDX Portal: Patient Clinical Information View

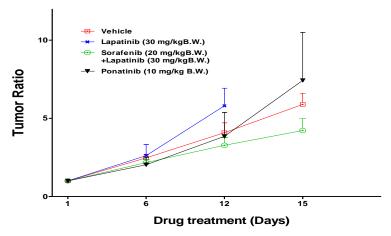


BCM PDX Portal: Gene Expression View

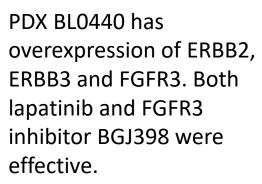


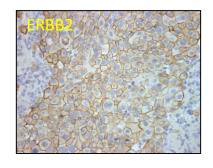
Screening for effective targeted therapies

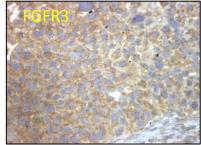

PDX BL0269 has overexpression of ERBB2 and SRC, and PIK3CA mutation. Only PIK3CA inhibitor BEZ was effective. (In the table, the numbers are RNA seg results; the "+" is the IHC staining results)

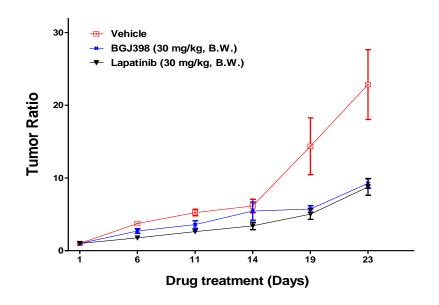

PIK3CA

inhibitor Lapatinib: EGFR and **ERBB2** inhibitor Sorafenib: Raf inhibitor

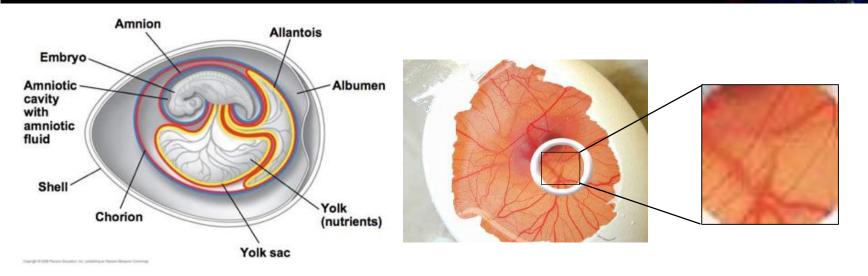

Ponatinib: Src inhibitor

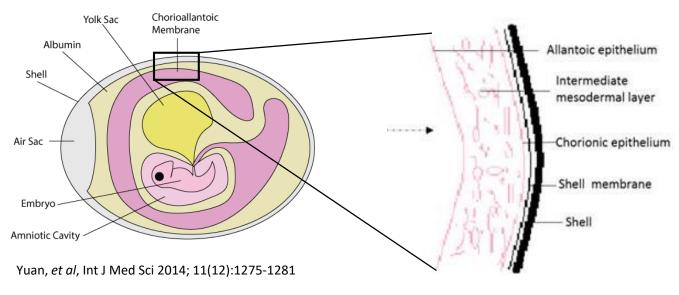


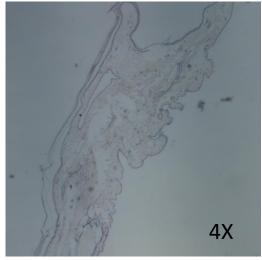



Repurposing FDA-approved drugs

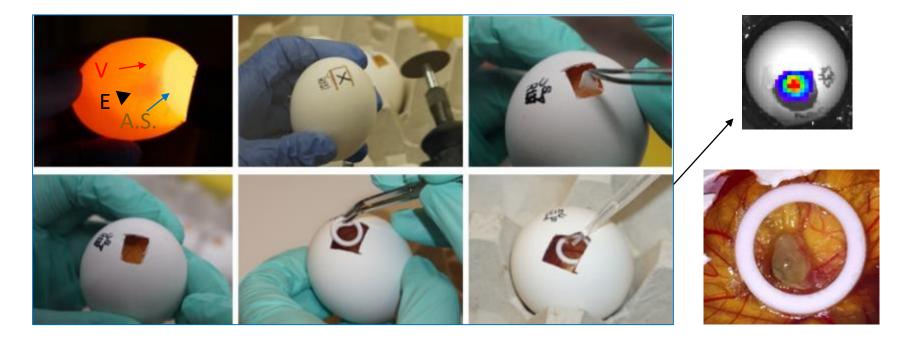
l	PDXs									
ERBB2	Protein mRNA	+++ 158.051								
ERBB3	Protein mRNA	46.0066								
FGFR3	Protein	+++								
	mRNA	80.387								
SRC	Protein	5%+								
	mRNA	70.0928								
EphB4	Mouse	NEGATIVE								
	Human	NEGATIVE								
PIK3CA										

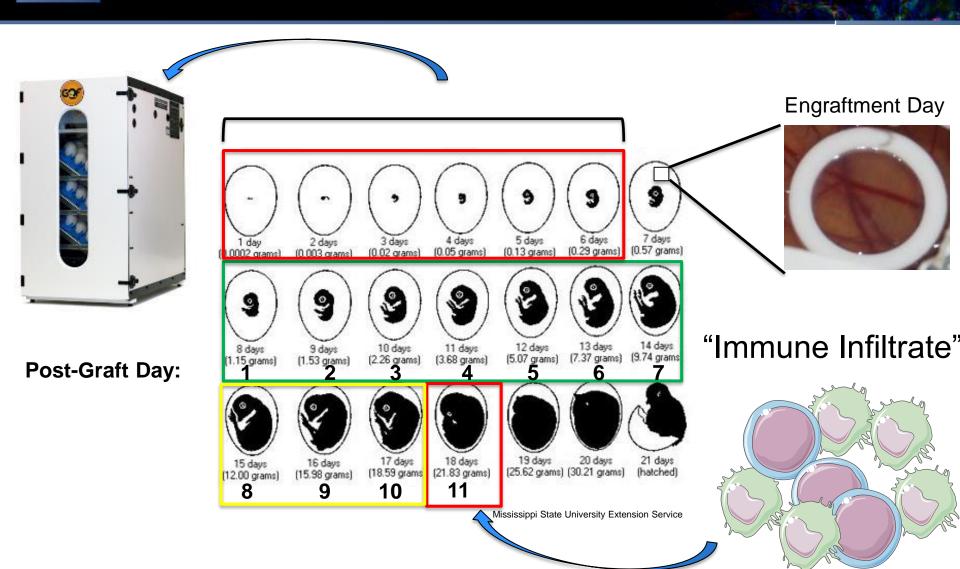


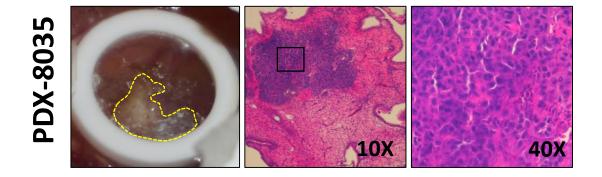



BGJ398: FGFR inhibitor Lapatinib: EGFR and ERBB2 dual inhibitor.

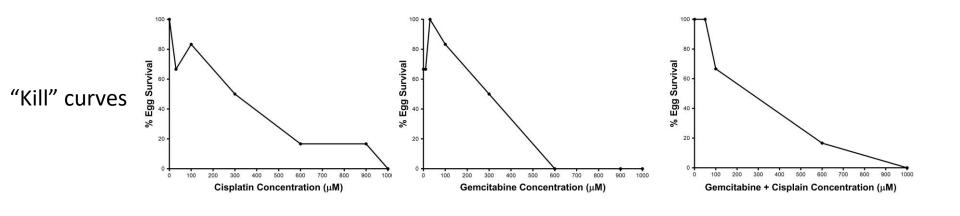
The Chorioallantoic Membrane (CAM)



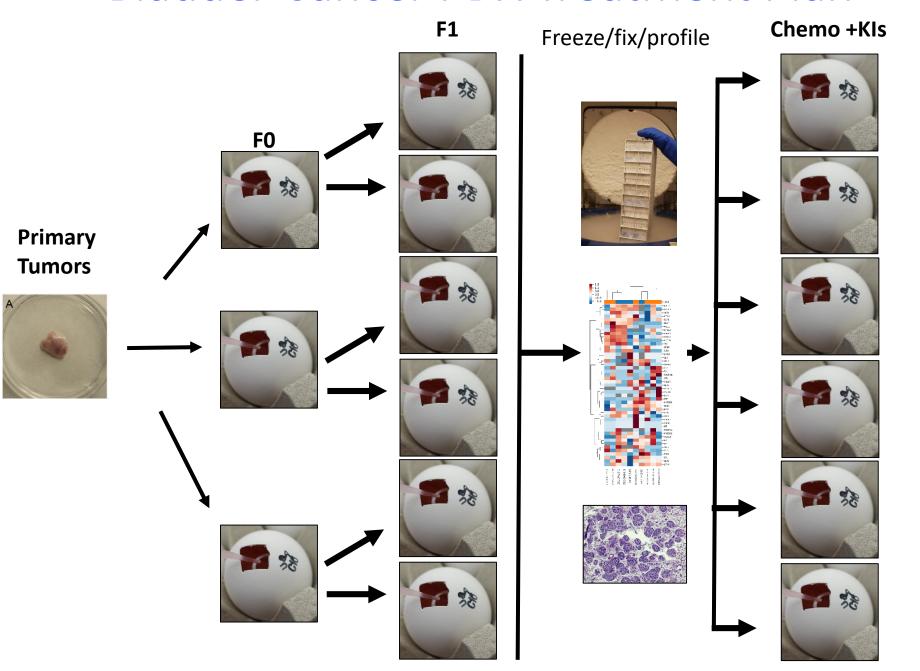

Preparing the Chorioallantoic Membrane (CAM) for Growth of Cell Lines and PDX

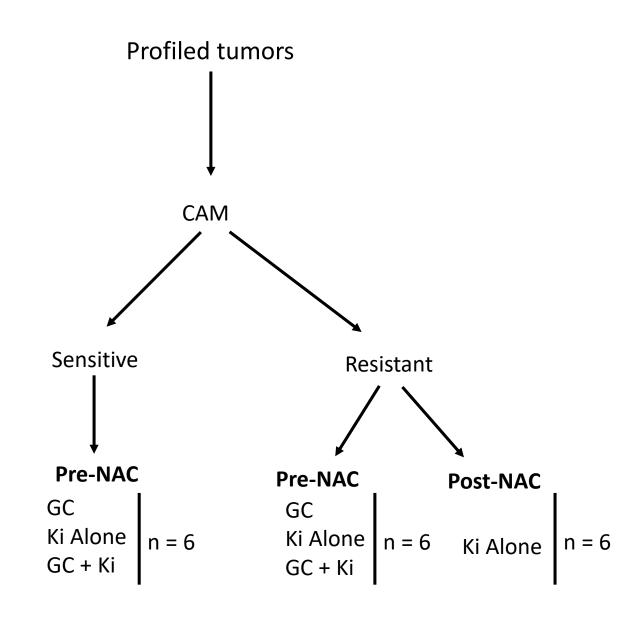

Li, M., Pathak, R. R., Lopez-Rivera, E., Friedman, S. L., Aguirre-Ghiso, J. A., Sikora, A. G. **The In Ovo Chick Chorioallantoic Membrane (CAM) Assay as an Efficient Xenograft Model of Hepatocellular Carcinoma**. *Journal of Visualized Experimentation* (104), e52411, doi:10.3791/52411 (2015).

CAM - The "Window of Opportunity"



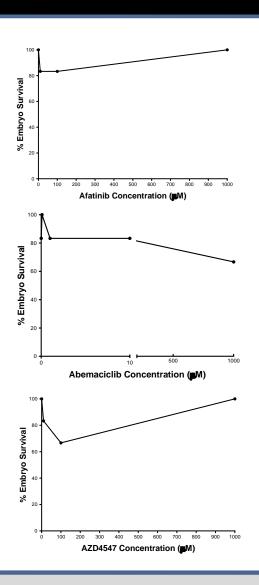
CAM

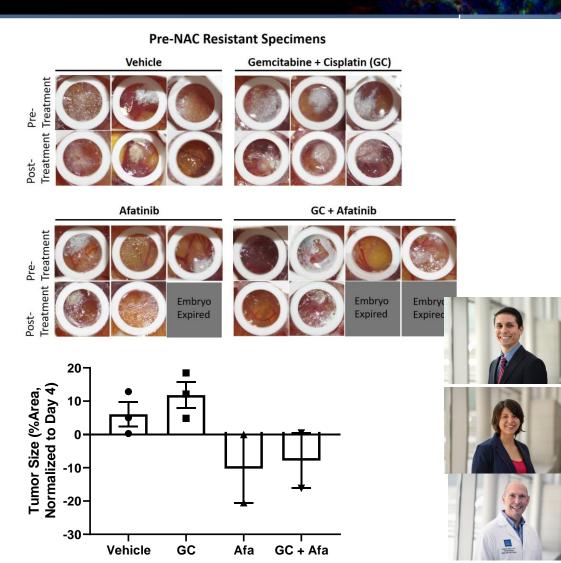

- Angiogenesis
- Tumor xenograft models
 - Glioblastoma, pancreatic cancer, melanoma, and osteosarcoma, HCC
- Both in ovo and ex ovo techniques
- Relatively high incidence of embryonic death after manipulation of the egg
 - Chick embryo mortality rates ranging from 25 50%
- BCM bladder CAM inventory
 - 101 tumors (51 viably frozen for future engraftment)
 - 31/50 (62%) attempts engrafted


Patient-derived xenograft on chorioallantoic membrane. Bladder tumor grown on CAM after seven days of culture. Hematoxlin and eosin stained section of CAM-engrafted bladder cancer histology at 10X and 40X.

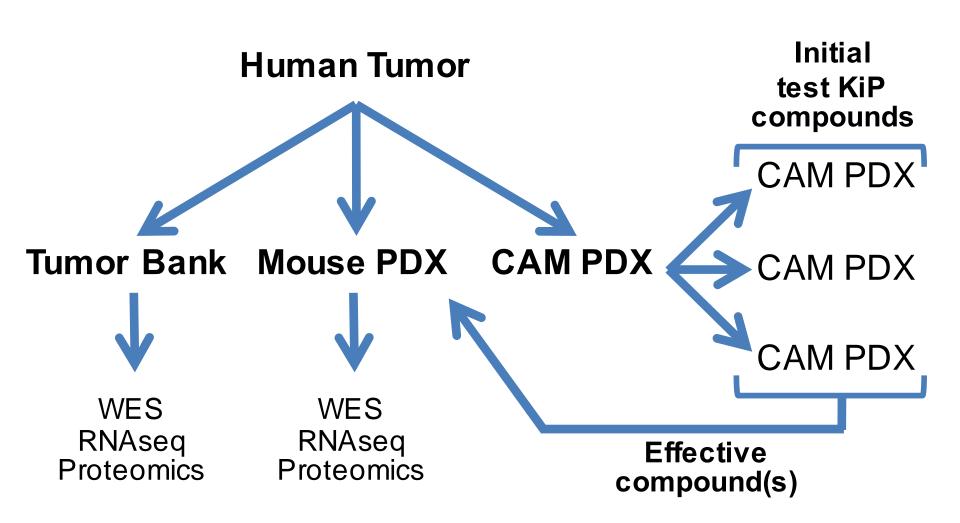
Bladder Cancer PDX Treatment Plan

CAM PDX Workflow

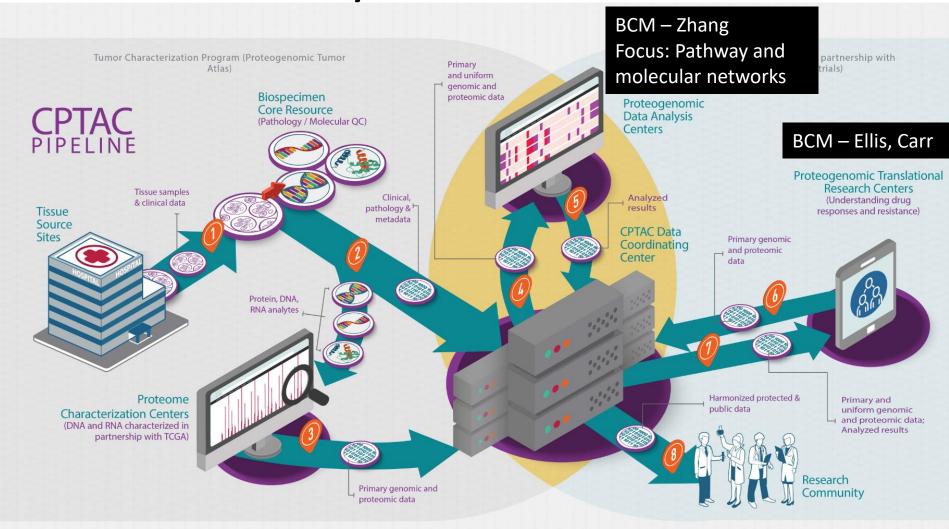



AZD4547 (FGFR) 18 nM - 30 uM **Abemaciclib** (CDK4/6) 0.12 - 2.7 uM

Afatinib (EGFR)

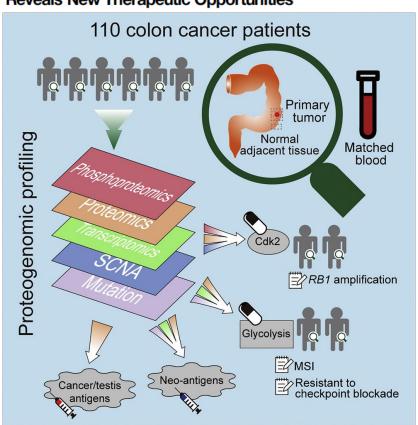

5.72 nM - 50 uM

TECHNOLOGY TKI on CAM Proof of Concept CORES



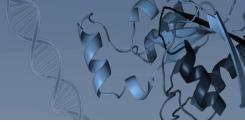
PDX Workflow

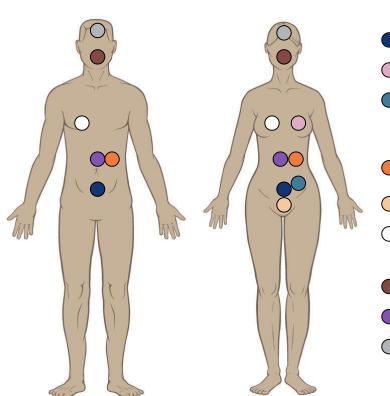
CPTAC –Clinical Proteomic tumor Analysis Consortium



CPTAC - Colorectal Cancer

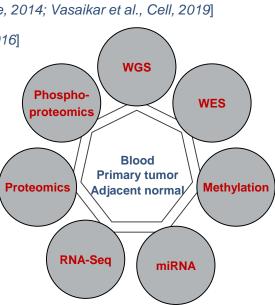
Resource


Proteogenomic Analysis of Human Colon Cancer Reveals New Therapeutic Opportunities



Highlights

- Systematic identification of colon cancer-associated proteins and phosphosites
- Proteomics-supported neoantigens and cancer/testis antigens in 78% of the tumors
- Rb phosphorylation is an oncogenic driver and a putative target in colon cancer
- Glycolysis inhibition may render MSI tumors more sensitive to checkpoint blockade


Clinical Proteome Tumor Analysis Consortium (CPTAC)

- Colorectal [Zhang et al., Nature, 2014; Vasaikar et al., Cell, 2019]
- Breast [Mertins et al., Nature, 2016]
- Ovary [Zhang et al., Cell, 2016]
- Kidney
- Uterus
- C Lung
- Head and neck
- Pancreas
- Brain

.

CPTAC V04.02 – Bladder

Inclusion criteria

- New dx, untreated, undergoing primary cytoreductive surgery
- New tumor event in an existing or concurrent patient
- Recurrence, metastasis or second primary

Exclusion criteria

- No prior cancer within last 12 months except BCE
- No prior systemic therapy for another cancer within last 10 yrs
 Blood and urine collection required

11.3 Appendix B: Summary of Key Study Criteria

CPTAC code	Cancer	Percent Tumor Nuclei	Percent Total Cellularity	Percent Necrosis	MaximumTumor IschemicTime (min)	Normal Tissue	
BLCA	Bladder Urothelial Carcinoma	≥80%	≥50%	≤20%	30 (45 for robotic)	Normal adjacenttissue as feasible	

Conclusions

- Proteomic profiling identifies clusters with similar protein kinase expression patterns
- KiP assay offers high throughput mass spec to identify druggable kinases and candidate kinase inhibitors
- Mouse PDX models established with proof of concept testing kinase inhibitors stratified by chemosensitivity.
- CAM PDX offers high throughput testing of chemotherapy and kinase inhibitors
- CPTAC for bladder cancer 2020-21