Characterization of Met signaling in urothelial carcinoma of the bladder

Young Lee

Urologic Oncology Branch, National Cancer Institute
Hepatocyte Growth Factor: *mitogen, motogen, morphogen*

mesenchymal cell expression
- fibroblasts, glial cells, smooth muscle, macrophages

broad target cell spectrum
- hepatocytes, epithelial & endothelial cells, myeloid & lymphoid cells, melanocytes

roles in development and homeostasis
- somite migration, limb formation, organogenesis
- cell & tissue survival, tissue repair & regeneration

roles in cancer
- ligand & receptor overexpression, receptor mutations
- tumor growth, invasion & metastasis
Met and HGF expression in bladder tumor is correlated with poor prognosis

• Higher Met abundance in the bladder tumors is correlated with lower survival rate compared to low or no Met.
 Cheng HL. et al. (2002) J Clin Oncol 20, 1544-1550

• Higher HGF plasma levels found in muscular invasive bladder cancer.
 Wang P. et al. (2007) Urology 69, 780-784

• Phosphorylated Met is associated with poor prognosis in bladder cancer patients.
 Miyata Y. et al. (2009) Hum Pathol 40, 496-504
Ectodomain Shedding: A Common Process with Diverse Functional Roles

- Membrane anchored ligand release (EGF-R ligands, TNFα)
- Receptor downregulation (TNF-R1, TRAPS)
- Receptor activation (Notch, Tie-1, ErbB-4)
- Met shedding is increased in tumor vs normal cells
- Shed Met ECD is stable & easily measured in plasma & urine

In search of partners: linking extracellular proteases to substrates

Christopher M. Overall* and Carl P. Blobel*

NATURE REVIEWS | MOLECULAR CELL BIOLOGY
VOLUME 8 | MARCH 2007 | 245
Urinary sMet levels in bladder cancer patients are significantly higher than matched normals.

McNeil et al. Journal of Translational Medicine
Accurately selecting therapies that will be effective against a specific tumor is the ultimate goal of clinicians treating bladder cancer.

The present preclinical study was designed to interrogate potentially oncogenic HGF/Met signaling in a collection of urothelial carcinoma (UC) derived cell lines to better define the nature and extent of HGF/Met pathway involvement in bladder cancer.
Met levels in bladder cancer cell lines

Lee YL., Apolo AB., Agarwal PK. and Bottaro DP. Characterization of HGF/Met Signaling in Cell Lines Derived From Urothelial Carcinoma of the Bladder (submitted to *Exp Op on Ther Targ*)
Crizotinib inhibits HGF-activated pMet in bladder cancer cell lines

Met^low

Met^int

Met^high

Met level

Met^low
RT-4
T24M3
T24M2
TCC-SUP

Met^int
T24
UMUC5
HT1197
SW780

Met^high
J82
UMUC3
5637
HT1376
Crizotinib inhibits HGF/Met effectors in bladder cancer cells

<table>
<thead>
<tr>
<th></th>
<th>T24M2 (Met<sup>low</sup>)</th>
<th>TCC-SUP (Met<sup>low</sup>)</th>
<th>UMUC5 (Met<sup>int</sup>)</th>
<th>SW780 (Met<sup>int</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pAkt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tAkt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pErk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tErk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HGF</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PF1066</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- PF1066 concentrations (μM): 5, 10, 5, 10, 5, 10, 5, 10.
Cabozantinib inhibits HGF-activated pMet in bladder cancer cell lines

Metlow
- RT-4
- T24M3
- T24M2
- TCC-SUP

Metint
- T24
- UMUC5
- HT1197
- SW780

Methigh
- J82
- UMUC3
- 5637
- HT1376

![Graph showing the inhibition of pMet by Cabozantinib at different Met levels and cell lines.](image-url)
Cabozantinib inhibits HGF/Met signaling pathways

- RT4 (Met^{low})
 - pAkt
 - tAkt
 - pErk
 - tErk

- T24M2 (Met^{low})
 - pAkt
 - tAkt
 - pErk
 - tErk

- T24M3 (Met^{low})
 - pAkt
 - tAkt
 - pErk
 - tErk

- TCC-SUP (Met^{low})
 - pAkt
 - tAkt
 - pErk
 - tErk

- UMUC5 (Met^{int})
 - pAkt
 - tAkt
 - pErk
 - tErk

- SW780 (Met^{int})
 - pAkt
 - tAkt
 - pErk
 - tErk

- J82 (Met^{high})
 - pAkt
 - tAkt
 - pErk
 - tErk

- HGF
 - XL184

- +
- 30
- 300

- +
- 30
- 300

- +
- 30
- 300

- +
- 30
- 300

- +
- 30
- 300
Crizotinib inhibits HGF-induced cell growth and invasion

A

RT4 Met\textsubscript{low}

UMUC5 Met\textsubscript{int}

UMUC3 Met\textsubscript{high}

5637 Met\textsubscript{high}

B

TCC-SUP Met\textsubscript{low}

UMUC5 Met\textsubscript{int}

HGF

PF1066

HGF/PF1066

*P < 0.05
Crizotinib inhibits HGF-induced cell growth and invasion

A

RT4 Metlow

UMUC5 Metint

UMUC3 Methigh

TCC-SUP Metlow

B

TCC-SUP Metlow

UMUC5 Metint

HGF

PF1066

HGF/PF1066

*P < 0.05
Cabozantinib inhibits HGF-induced cell growth and invasion

A

- RT4 Met_{low}
- T24M3 Met_{low}
- UMUC5 Met_{int}
- J82 Met_{high}
- UMUC3 Met_{high}

B

- RT4 Met_{low}
- T24M2 Met_{low}
- UMUC5 Met_{int}
- SW780 Met_{int}
- J82 Met_{high}

*P < 0.05
Cabozantinib inhibits HGF-induced cell growth and invasion

A

- RT4 Met^{low}
- T24M3 Met^{low}
- UMUC5 Met^{int}
- J82 Met^{high}
- UMUC3 Met^{high}

B

- RT4 Met^{low}
- T24M2 Met^{low}
- UMUC5 Met^{int}
- SW780 Met^{int}
- J82 Met^{high}

*P < 0.05
Crizotinib and cabozantinib inhibit HGF-induced anchorage independent growth

A

<table>
<thead>
<tr>
<th></th>
<th>RT-4 Met<sub>low</sub></th>
<th>T24M3 Met<sub>low</sub></th>
<th>UMUC5 Met<sup>int</sup></th>
<th>SW780 Met<sup>int</sup></th>
<th>J82 Met<sup>high</sup></th>
<th>UMUC3 Met<sup>high</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>HGF PF1066 (5nM)</td>
<td>0 - - - +</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>RT-4 Met<sub>low</sub></th>
<th>T24M3 Met<sub>low</sub></th>
<th>UMUC5 Met<sup>int</sup></th>
<th>SW780 Met<sup>int</sup></th>
<th>J82 Met<sup>high</sup></th>
<th>UMUC3 Met<sup>high</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>HGF XL184 (30nM)</td>
<td>0 - - - +</td>
</tr>
</tbody>
</table>

*P < 0.05
hHGF Accelerates SW780 Tumor Xenograft Growth in hHGF(ki)/SCID vs SCID Mice

![Graph showing tumor growth comparison between SCID and hHGF/SCID groups](graph.png)

- **SCID**
- **hHGF/SCID**

Tumor volume (mm3 x 10$^{-2}$) vs days post implant.

*P < 0.05
Cabozantinib Inhibits SW780 Tumor Xenograft Growth in hHGF/SCID Mice

- ○ hHGF/SCID vehicle
- □ hHGF/SCID XL184

Start of XL184 treatment

**P < 0.01

Days post implant

Tumor volume (mm$^3 \times 10^{-2}$)
Cabozantinib inhibits pMet in SW780 tumor Xenograft in hHGF/SCID mice

**P < 0.05
Conclusions

• Met is widely expressed in urothelial carcinoma cells
 – Added HGF activated Met and downstream effectors

• Crizotinib and cabozantinib inhibited HGF-induced:
 – Met and effector activation
 – Cell invasion
 – Proliferation
 – *in vitro* anchorage-independent growth

• hHGF accelerated SW780 xenograft growth in mice; cabozantinib reversed this effect

• Phase II trial of cabozantinib in bladder cancer patients as a second line therapy (at the NCI clinical center, Dr. Apolo, PI)
Future Directions

• Determine oncogenic impact of Met-related receptor tyrosine kinases (RTKs) in bladder cancer cell lines

• Examine the effects of cabozantinib inhibition in RTKs

• Study the biopsy samples from bladder cancer patients treated with cabozantinib to identify its targets to better understand drug efficacy
Acknowledgements

Urologic Oncology Branch, NCI
Donald P. Bottaro
Rene Costello
Tiffany Wong
Fabiola Cecchi

Piyush K. Agarwal

Genitourinary Malignancies Branch, NCI
Andrea B. Apolo

Bladder Cancer Advocacy Network