



## Biomarker Discovery: Computational Approaches

Seungchan Kim

Center for Computational Systems Biology Prairie View A&M University CCSB@PVAMU [https://ccsb.pvamu.edu]







PRAIRIE VIEW



#### Welcome to CCSB@PVAMU

https://ccsb.pvamu.edu/

The Center for Computational Systems Biology at the Prairie View A&M University (CCSB@PVAMU) was established in 2017, by a funding from the Texas A&M University Systems Chancellor's Research Initiative (CRI) to become a nationally recognized computational systems biology research center.

As a newly established center, we are rapidly developing research programs to study 1) biomedical questions of high translational significance and impact and 2) challenging questions in plant and agricultural science, utilizing various genomics and computational tools. The center aims to achieve:

- · Recruitment of high-quality faculty and research scientists
- Promoting interdisciplinary research across Roy G. Perry College of Engineering, College of Agriculture and Human Sciences, College of Arts and Sciences, and other research centers/labs within PVAMU campus
- Development of active collaboration with leading biomedical research institutes as well as bioinformatics research centers
- Development of training programs for bioinformatics and computational systems biology at both the undergraduate and the graduate levels.



. . . . .

#### Recent posts





#### CCSB Collaboration: SU2C







### What is a Biomarker?





#### Biomarkers can be

- Pulse
- Blood pressure
- Basic chemistries or more complex laboratory tests of blood and other tissues





#### Molecular Biomarkers

- Gene mutations
- Single Nucleotide Polymorphisms
- Gene expressions
- Small molecules such as miRNAs
- Emerging from analysis of high throughput molecular measurements such as DNA and RNA sequencing data





#### What is a Biomarker?

- NIH [1998] a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention
- WHO [2001] any substance, structure, or process that can be measured in the body or its products and influence or predict the incidence of outcome or disease, or
- WHO [2001] almost any measurement reflecting an interaction between a biological system and a potential hazard, which may be chemical, physical, or biological.

Curr Opin HIV AIDS. 2010 November ; 5(6): 463–466





#### What is a Biomarker?

- NIH [1998] a characteristic that is objectively <u>measured</u> and evaluated as an <u>indicator</u> of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention
- WHO [2001] any substance, structure, or process that can be <u>measured</u> in the body or its products and influence or <u>predict</u> the incidence of outcome or disease, or
- WHO [2001] almost any <u>measurement reflecting</u> an interaction between a biological system and a potential hazard, which may be chemical, physical, or biological. <u>The measured response may be</u> <u>functional and physiological, biochemical at the cellular level, or a</u> <u>molecular interaction.</u>

*Curr Opin HIV AIDS.* 2010 November ; 5(6): 463–466



### Biomarkers

PRAIRIE VIEW A&M UNIVERSITY

- classification and prediction,
- as surrogate outcomes in clinical trials,
- as measures of toxic or preventive exposures, or
- as a guide to individual treatment choice





## Biomarker Discovery: Workflow











#### Bottle necks/Challenges

- Sample size
  - How to estimate statistical power
- Preprocessing
  - Normalization
  - Batch correction
- Internal validation
  - Statistical validation
  - Error estimation



### Sample Size

PRAIRIE VIEW

- Is the study sufficiently statistically powered to test hypothesis?
- Traditional method to estimate sample size is often based on a simple, irrelevant hypothesis test
  - Effect size often arbitrarily chosen
- Simulation-based approach is more desirable, where
  - Synthetic data are generated from a plausible data model,
  - Classifier design and evaluation should performed with varying size of cases and controls to determine sample size





#### Sample Size



 The study is adequately powered (>0.9) to detect a 2 fold difference in as few as 25 miRNAs out of 7,000 while adjusting for multiple tests using an FDR correction of 0.05





### Sample Size: effect size vs. FDR







#### Sample Size: simulation-based





### Normalization

PRAIRIE VIEW

- Compensate for technical and/or biological covariates such as (in RNAseq):
  - Sequencing depth
  - Transcript length
- Also, done to transform the measurements so that they fit into a mathematical model – often called standardization
- Aggregate vs single-sample normalization







sample



#### Batch correction

PRAIRIE VIEW

- Minimize systematic, undesired difference in measurements between batches of samples
  - Difference between different sites where the samples are collected
  - Difference between different times when the samples are collected
  - Standardized protocols to collect samples should mitigate this issue, but ...
- Some of the conditions are not controllable.



Site 1

Site 2

### Batch: Multiple sites

Before Batch Correction













### Another Example



After



![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

#### Another Example

![](_page_21_Figure_3.jpeg)

cancer

•

•

![](_page_21_Figure_5.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_23_Picture_0.jpeg)

### Error Estimation

- TPR or sensitivity
- FPR or 1 specificity
- ROC

PRAIRIE VIEW A&M UNIVERSITY

- AUC
- Error or accuracy

![](_page_23_Figure_7.jpeg)

• How well (accurately) can we estimate these?

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_1.jpeg)

#### Error Estimation

$$\hat{\varepsilon} = E\left[\left(\hat{\varphi}_{N,k}(\boldsymbol{X}_{i}) - Y_{i}\right)^{2}\right] \qquad \qquad \text{Estimated Error}$$

$$= E\left[\left(\varphi(\boldsymbol{X}_{i}) + \left(\hat{\varphi}_{k}(\boldsymbol{X}_{i}) - \varphi(\boldsymbol{X}_{i})\right) + \left(\hat{\varphi}_{N,k}(\boldsymbol{X}_{i}) - \hat{\varphi}_{k}(\boldsymbol{X}_{i})\right) - Y_{i}\right)^{2}\right]$$

$$= E\left[\left(\left(\varphi(\boldsymbol{X}_{i}) - Y_{i}\right) + \left(\hat{\varphi}_{k}(\boldsymbol{X}_{i}) - \varphi(\boldsymbol{X}_{i})\right) + \left(\hat{\varphi}_{N,k}(\boldsymbol{X}_{i}) - \hat{\varphi}_{k}(\boldsymbol{X}_{i})\right)\right)^{2}\right]$$

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_1.jpeg)

#### Interval Validation

![](_page_25_Figure_3.jpeg)

CV: cross-validation – find  $\lambda$  (lambda) for Lasso

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

### Network-based Approach

![](_page_26_Figure_3.jpeg)

![](_page_27_Picture_0.jpeg)

![](_page_27_Picture_1.jpeg)

### EDDY: Evaluation of Differential DependencY

![](_page_27_Figure_3.jpeg)

![](_page_28_Picture_0.jpeg)

![](_page_28_Picture_1.jpeg)

#### EDDY + CTRP-CCLE

![](_page_28_Figure_3.jpeg)

- Speyer et al., Pac Symp Biocomput. 2017; 22: 497–508.
- Identifies pathways enriched with differential dependency between sensitive and non-sensitive cancer cell lines, as in DDNs
- Discover mediators of drug sensitivity, i.e. potential targets?

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_1.jpeg)

#### Fighting Cancer, Cell by Cell

![](_page_29_Figure_3.jpeg)

![](_page_30_Picture_0.jpeg)

![](_page_30_Picture_1.jpeg)

#### Fighting Cancer, Cell by Cell

![](_page_30_Picture_3.jpeg)

![](_page_31_Picture_0.jpeg)

![](_page_31_Picture_1.jpeg)

## What about Bladder Cancer!

![](_page_32_Picture_0.jpeg)

Translational Team Science Award (DoD-USAMRMC-CDMRP-TTSA), "Development of Classifiers for Novel Bladder Cancer Subtypes"

Woonyoung Choi (JHMI) Seungchan Kim (PVAMU)

![](_page_32_Picture_3.jpeg)

![](_page_32_Figure_4.jpeg)

![](_page_32_Picture_5.jpeg)

![](_page_33_Picture_0.jpeg)

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

![](_page_33_Figure_3.jpeg)

![](_page_34_Picture_0.jpeg)

![](_page_34_Picture_1.jpeg)

# Pathways enriched with differential dependency between BIE and BIS

| Pathway                                                         | # genes | p-val  | Rewiring | Mediators                                |
|-----------------------------------------------------------------|---------|--------|----------|------------------------------------------|
| SYNTHESIS OF PIPS AT THE LATE<br>ENDOSOME MEMBRANE              | 10      | 0.0025 | 0.68     | PIKFYVE                                  |
| MTORC1 MEDIATED SIGNALLING                                      | 11      | 0.0183 | 0.88     | EIF4EBP1, MLST8                          |
| PHOSPHORYLATION OF CD3 AND TCR<br>ZETA CHAINS                   | 16      | 0.0225 | 0.27     | CD4, CD3E, CD3D,<br>CD3G, PAG1, CSK      |
| SEMA3A PAK DEPENDENT AXON<br>REPULSION                          | 15      | 0.0236 | 0.65     | LIMK1 PLXNA1                             |
| ELEVATION OF CYTOSOLIC CA2 LEVELS                               | 10      | 0.0246 | 0.60     | TRPC3                                    |
| SYNTHESIS OF PIPS AT THE EARLY<br>ENDOSOME MEMBRANE             | 12      | 0.0261 | 0.73     | PI4K2A MTMR2                             |
| CELL EXTRACELLULAR MATRIX<br>INTERACTIONS                       | 14      | 0.0327 | 0.55     | PARVA FERMT2                             |
| SYNTHESIS SECRETION AND<br>INACTIVATION OF GLP1                 | 19      | 0.0390 | 0.87     | CDX2 PAX6                                |
| CD28 DEPENDENT VAV1                                             | 11      | 0.0394 | 0.50     | PAK2 FYN                                 |
| GRB2 SOS PROVIDES LINKAGE TO MAPK<br>SIGNALING FOR INTERGRINS   | 15      | 0.0454 | 0.61     | ITGB3 SOS1 TLN1                          |
| THE ROLE OF NEF IN HIV1 REPLICATION<br>AND DISEASE PATHOGENESIS | 28      | 0.0479 | 0.69     | AP2S1, CD8B, AP1S2,<br>ELMO1, AP1S1, B2M |

![](_page_34_Figure_4.jpeg)

![](_page_35_Picture_0.jpeg)

![](_page_35_Picture_1.jpeg)

![](_page_35_Picture_2.jpeg)

#### Center for Computational Systems Biology

![](_page_35_Picture_4.jpeg)

Prairie View A&M University CCSB@PVAMU https://ccsb.pvamu.edu

![](_page_36_Picture_0.jpeg)

![](_page_36_Picture_1.jpeg)

### Q&A