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Welcome to CCSB@PVAMU

The Center for Computational Systems Biology at the Prairie View A&M University (CCSB@PVAMU) was established in 2017, by a
funding from the Texas A&M University Systems Chancellor’s Research Initiative (CRI) to become a nationally recognized computational
systems biology research center.

As a newly established center, we are rapidly developing research programs to study 1) biomedical questions of high translational
significance and impact and 2) challenging questions in plant and agricultural science, utilizing various genomics and computational tools.
The center aims to achieve:

e Recruitment of high-quality faculty and research scientists

¢ Promoting interdisciplinary research across Roy G. Perry College of Engineering, College of Agriculture and Human Sciences,
College of Arts and Sciences, and other research centers/labs within PVAMU campus

e Development of active collaboration with leading biomedical research institutes as well as bioinformatics research centers

e Development of training programs for bioinformatics and computational systems biology at both the undergraduate and the
graduate levels.
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lacobas et al. 25 July 2019. Genes 10(8):560.
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Recent posts

¢ 2019 IEEE BIBM Workshop - Single
Cell -Omics: Challenges and

¢ [DOD-CDMRP Translational Team
Science Award] Development of

¢ [CCSB Seminar Series] Radiation
Dosimetry Measurements Onboard Air

¢ [CCSB Seminar Series] Single Cell
Genomics at the Center for
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What is @ Biomarker?



Biomarkers can be

* Pulse

* Blood pressure
* Basic chemistries or more complex laboratory tests of blood and
other tissues
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Molecular Biomarkers

* Gene mutations

* Single Nucleotide Polymorphisms
* Gene expressions

* Small molecules such as miRNAs

* Emerging from analysis of high throughput molecular measurements
such as DNA and RNA sequencing data
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What is a Biomarker?

* NIH [1998] — a characteristic that is objectively measured and
evaluated as an indicator of normal biological processes, pathogenic
processes, or pharmacologic responses to a therapeutic intervention

« WHO [2001] — any substance, structure, or process that can be

measured in the body or its products and influence or predict the
incidence of outcome or disease, or

 WHO [2001] — almost any measurement reflecting an interaction

between a biological system and a potential hazard, which may be
chemical, physical, or biological.

Curr Opin HIV AIDS. 2010 November ; 5(6): 463-466



What is a Biomarker?

* NIH [1998] — a characteristic that is objectively measured and
evaluated as an indicator of normal biological processes, pathogenic
processes, or pharmacologic responses to a therapeutic intervention

« WHO [2001] — any substance, structure, or process that can be
measured in the body or its products and influence or predict the
incidence of outcome or disease, or

« WHO [2001] — almost any measurement reflecting an interaction
between a biological system and a potential hazard, which may be
chemical, physical, or biological. The measured response may be
functional and physiological, biochemical at the cellular level, or a
molecular interaction.

Curr Opin HIV AIDS. 2010 November ; 5(6): 463-466
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Biomarkers

classification and prediction,
* as surrogate outcomes in clinical trials,
* as measures of toxic or preventive exposures, or

as a guide to individual treatment choice



Biomarker Discovery:
Workflow
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NCI EDRN Guideline
JNCI, Vol. 93, No. 14, July 18, 2001
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Clinical Assay
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T Bottle necks/Challenges

* Sample size

\ Preprocessing ’

ctrl vs. case * How to estimate statistical
_% Feature !. _
selection * Preprocessing

* Normalization

o«
- <> * Batch correction
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Sample Size

* s the study sufficiently statistically powered to test hypothesis?

* Traditional method to estimate sample size is often based on a
simple, irrelevant hypothesis test
* Effect size — often arbitrarily chosen

» Simulation-based approach is more desirable, where
* Synthetic data are generated from a plausible data model,

* Classifier design and evaluation should performed with varying size of cases
and controls to determine sample size
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* The study is adequately powered (>0.9) to
detect a 2 fold difference in as few as 25
miRNAs out of 7,000 while adjusting for
multiple tests using an FDR correction of
0.05



-ﬂ PRAIRIE VIEW
A&M UNIVERSITY
‘A‘m «

Power
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Sample Size: effect size vs. FDR

Power vs. sample size with fdr=0.05 and A/c=0.8
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Sample Size: simulation-based
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Normalization

* Compensate for technical and/or biological covariates such as (in
RNAseq):

* Sequencing depth
* Transcript length

* Also, done to transform the measurements so that they fit into a
mathematical model — often called standardization

» Aggregate vs single-sample normalization

@PVAMU
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Batch correction

* Minimize systematic, undesired difference in measurements between
batches of samples
* Difference between different sites where the samples are collected
 Difference between different times when the samples are collected

» Standardized protocols to collect samples should mitigate this issue, but ...

* Some of the conditions are not controllable.
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Batch: Multiple sites

Before Batch Correction
Cluster A Cluster B
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Another Example
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Error Estimation -
ey 0.8 1
* TPR or sensitivity o
* FPR or 1 - specificity E 0.6
* ROC § 0.4 1
« AUC £
0.2 {
0.0 . . .
* Error or accuracy 00 02 04 06 08 10

False Positive Rate

 How well (accurately) can we estimate these?



Error Estimation
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Interval Validation
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Training

> Etest = E[sk]

T
e [N T

Repeat

L

CV: cross-validation — find A (lambda) for Lasso
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Network-based Approach
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EDDY: Evaluation of Differential DependencY
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Jung et al., NAR 2014
Speyer et al., PSB 2016
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RNAseq of 935 cancer cell lines
>75TB in size

Cell lines chemical sensitivity
for 481 small compounds

") Cancer Target Discovery

(CTD and Develfpm;:%
oo

Speyer et al., Pac Symp
Biocomput. 2017; 22:
497-508.

* |dentifies pathways enriched with differential dependency between
sensitive and non-sensitive cancer cell lines, as in DDNs

* Discover mediators of drug sensitivity, i.e. potential targets?
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Fighting Cancer, Cell by Cell
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Fighting Cancer, Cell by Cell
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NVIDIA Foundation Awards $400,000 to Two
Trailblazers in Cancer Research
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What about Bladder Cancer!
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Translational Team Science Aim 1: Molecular and clinical characterization of immune subtypes of basal tumors
Award (DoD-USAMRMC-

CDMRP-TTSA),

Classifiors for N
Classifiers for Novel Suppressed Enriched

Poor survival outcomes High TCIL & IFNy signature Enrichment of CAFs High mutation FGFR3 mutation

B Iad der Ca n ce r A T TS DA Good (w/o NAC) and Chemo-resistance burden
SUbtypeS” Improved (w/ NAC) survival
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Basal tumors Luminal tumors

Preliminary data Translation &

Commercialization
(Future)

”

Woonyoung Choi (JHMI)
Seungchan Kim (PVAMU)

* Clinical assay

RNAseq development
RNAse

(408) (250)q | Biomarkers> e Performance

Class discovery assessment
Initial biomarker discovery Biomarker optimization

Classifier development .
Performance assessment * Clinical assay
Rewired pathways validation

Novel therapeutic targets

Aim 2 * SBIR Phase | & Il
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Pathways enriched with differential dependency
between BIE and BIS
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Pathway # genes p-val Rewiring Mediators PIK3R4
SYNTHESIS OF PIPS AT THE LATE 10 0.0025 0.68 PIKFYVE s &
ENDOSOME MEMBRANE ~‘ I~
MTORC1 MEDIATED SIGNALLING 11 00183 0.88 EIF4EBP1, MLST8 MBS 1
PHOSPHORYLATION OF CD3 AND TCR 16 0.0225 027  CD4, CD3E, CD3D, Faa sy ise, o
ZETA CHAINS CD3G, PAG1, CSK X PIKaGA-— - PIK3CH
SEMA3A PAK DEPENDENT AXON 15 0.0236 0.65 LIMK1 PLXNA1 PIKEYVE ——T % | N/
REPULSION X
ELEVATION OF CYTOSOLIC CA2 LEVELS 10  0.0246  0.60 TRPC3
SYNTHESIS OF PIPS AT THE EARLY 12 00261 0.73 PI4K2A MTMR2 o
ENDOSOME MEMBRANE
CELL EXTRACELLULAR MATRIX 14 00327 055 PARVA FERMT2
INTERACTIONS
SYNTHESIS SECRETION AND 19 0.0390 0.87 CDX2 PAX6 FIG4
INACTIVATION OF GLP1
CD28 DEPENDENT VAV1 11 00394 050 PAK2 FYN MTMR7
GRB2 SOS PROVIDES LINKAGE TO MAPK 15 0.0454  0.61 ITGB3 SOS1 TLN1

SIGNALING FOR INTERGRINS

THE ROLE OF NEF IN HIV1 REPLICATION 28 0.0479  0.69 AP2S1, CD8B, AP1S2, = BIE = pIS
AND DISEASE PATHOGENESIS ELMO1, AP1S1, B2M
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