Imaging for MIBC Trials: A Radiologist's Perspective

Jamie Marko, MD

Staff Clinician

Associate Research Physician

Department of Radiology and Imaging Sciences

NIH Clinical Center

Bethesda, MD

Disclosures and Disclaimers

- No financial disclosures
- The content of this presentation is the responsibility of the presenter and does not necessarily represent the official views of the National Institutes of Health

Objectives

- Review the recommendations from the panel for defining radiographic eligibility for adjuvant clinical trials in MIBC
- Review the recommendations from the panel for defining disease recurrence during an adjuvant clinical trial for MIBC
- Discuss potential future roles for imaging in the care of patients with MIBC

Facts about Radiologists: The Good

- We are there to help
- Most of us are smart
- We have lots of training
- Our technology is constantly improving making our images amazing
- We are an independent voice objectively describing what we see
- We are trained in radiologic pathology

Facts about Radiologists: The Bad

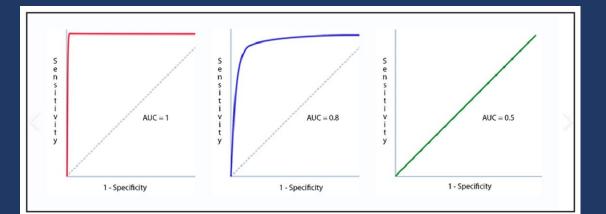
- Our technology is constantly changing, making much of our research outdated or obsolete
- We are not pathologists, so we describe what we see but often can't be sure
 - Clinical correlation anyone?

We are not all the same!

- Radiologist A: very sensitive
 - Over callers
 - "I don't want to miss anything so I will call that 7 mm LN a possible metastasis and recommend follow-up"
- Radiologist B: favors specificity over sensitivity
 - Under callers
 - "That 1.4 cm lymph node is probably just reactive, let's give the patient a chance to declare themselves"

• Radiologist C: follows standard teaching, uses best available data

 "I use 1 cm short axis as my cut-off for LN metastases given its balance of sensitivity and specificity"



Helping Radiologist C

- Participating in interdisciplinary discussions, such as the FDA/NCI panel, gives Radiologist C a fighting chance by making standards available
- But as we move to a discussion of the standards that the panel suggests, please keep in mind that choice of standards affects the sensitivity and specificity of our imaging examinations

https://www.cienciasinseso.co m/en/category/epidemiology/

ROC curve

- Lymph node:
 - Short axis > 0.5 cm: high sensitivity, low specificity
 - Short axis > 1.5 cm: low sensitivity, high specificity
 - Short axis ≥ 1 cm: good balance of sensitivity and specificity
- Lack of data on exact sensitivity and specificity numbers for lymph nodes by cancer type and nodal stations

Objective 1: Defining Radiographic Eligibility

- Indication: MIBC. Evaluate prior to clinical trial enrollment
- Goal: Show that this patient has <u>no evidence of disease (NED)</u> prior to enrolling in an adjuvant trial

General Radiology Practices

What test to order?

What test to order?

- CT of the chest, abdomen and pelvis with IV contrast within 4 weeks prior to trial enrollment
- Why?
 - Widely available
 - Technique can be standardized
 - Able to demonstrate the common manifestations of recurrent or metastatic MIBC

Eur J Radiol. 2017;97:119-130. Urology. 1980;16(2):142-144. Cancer Imaging. 2003;3(2):96-100.

How should the test be done?

How should the test be done?

- Trials should adhere to imaging acquisition, display and radiologic interpretation technique as advised by the Quantitative Imaging Biomarker Alliance (QIBA)
- Why?
 - Affects rate of lesion detection
 - Affects size measurements

Radiology. 2003;226(1):231-234. Radiology. 2005;234(3):934-939.

What about MRI and PET-CT?

- Although data show that MRI and PET-CT offer high specificity or negative predictive value, the differences are not substantial when compared directly to CT
- MRI and PET remain problem solving tools

Curr Opin Urol. 2011;21(5):393-397.

Old Gold

- All prior relevant imaging examinations should be systematically archived
- Why?
 - Useful in clarifying equivocal findings at enrollment
 - 1.2 cm lung nodule
 - 2.1 cm hypodense liver lesion
 - 1.1 cm sclerotic bone lesion

Interpretation Recommendations

General Recommendation 1

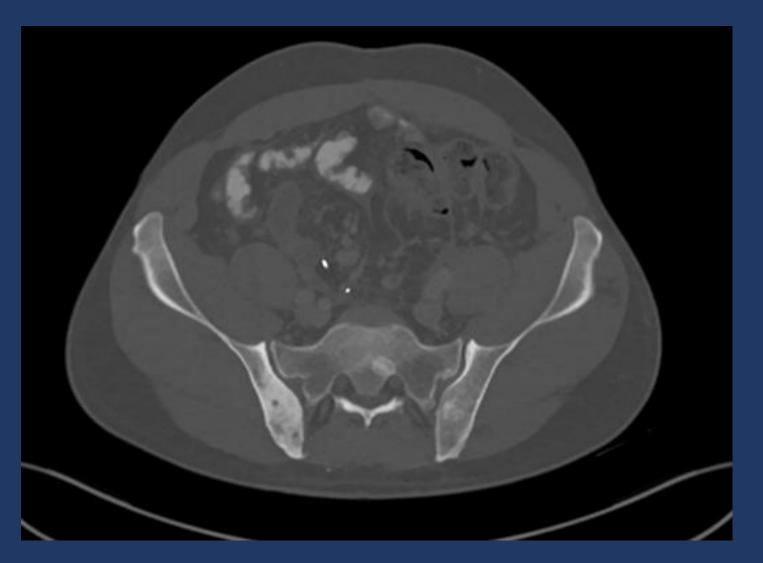
- If there is an indeterminate lesion without prior studies available, the lesion should be considered benign if it is < 1 cm
 - 1 cm represent general consensus in radiology practice as to what is reasonably sensitive and specific for malignancy
 - 1 cm is the size needed to accurately characterize the density of a lesion at CT

Eur J Radiol. 2017;97:119-130. Radiology. 2010.;254(1):31-46.

General Recommendation 2

- An indeterminate lesion ≥ 1 cm should be regarded as suspicious for malignancy and should be further evaluated prior to trial enrollment
- Options for further evaluation include:
 - Customized radiologic work-up
 - Repeat CT imaging after an appropriate follow-up interval
 - Biopsy

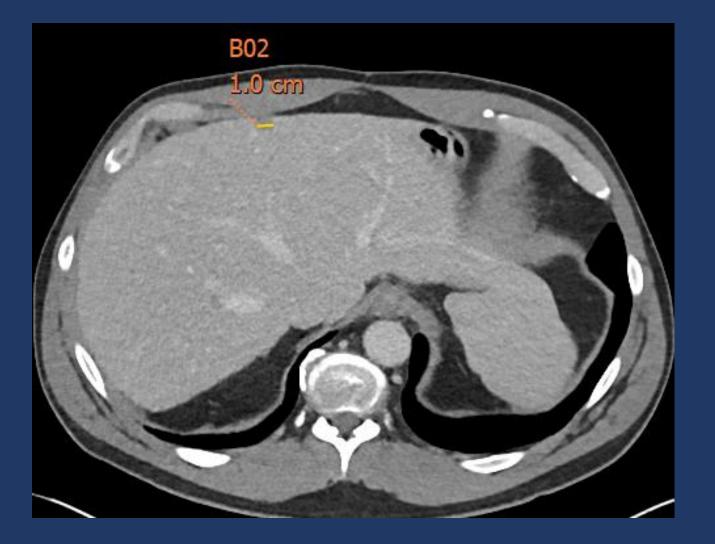
Site Specific Examples


Lymph Nodes Recommendation

• Customized radiologic work-up, follow-up imaging or biopsy:

\geq 1 cm in short axis

Case 2: Bone lesions


Bone Lesion Recommendation

• Customized radiologic work-up, follow-up imaging or biopsy if:

\geq 1 cm in long axis

Case 3: Liver Lesion

Liver Lesion Recommendation

• Customized radiologic work-up, follow-up imaging or biopsy if:

\geq 1 cm in long axis

Objective 2: Defining Disease Recurrence

- Indication: MIBC. Adjuvant trial surveillance
- Goal: Determine if there <u>has or has not</u> been disease progression while on trial using imaging

Uniform Model for Defining Recurrence

Uniform Model for Defining Recurrent MIBC

- New lesion ≥ 1 cm that was absent on initial imaging
 - Short axis for LN
 - Long axis for all other lesions

Uniform Model for Defining Recurrent MIBC

- New lesion ≥ 1 cm that was absent on initial imaging
 - Short axis for LN
 - Long axis for all other lesions
- Pre-existing lesion:
 - If < 1 cm on previous exam, demonstrating > 50% growth on 2 consecutive exams with ≥ 5 mm absolute increase
 - If \geq 1 cm on previous exam, demonstrating > 50% growth on a single exam

Uniform Model for Defining Recurrent MIBC

• New lesion ≥ 1 cm that was absent on initial imaging

- Short axis for LN
- Long axis for all other lesions
- Pre-existing lesion:
 - If < 1 cm on previous exam, demonstrating > 50% growth on 2 consecutive exams with ≥ 5 mm absolute increase
 - If \geq 1 cm on previous exam, demonstrating > 50% growth on a single exam
- Multifocal lesions measuring <1 cm demonstrating geographic distribution or radiologic/metabolic features pathognomic for metastatic disease

Site Specific Example

If new, then it is considered recurrent disease

 If pre-existing lesion, but negative for metastatic disease on customized radiologic workup, follow-up CT or biopsy: would require >50% growth in short axis on 1 or 2 exams depending on the size on the eligibility CT

Defining Date of Recurrence

• To backdate or not?

- Backdating: using the date when a lesion was initially visible on imaging
 - More temporally accurate but introduces inconsistency
- Not backdating: using the date when a lesion meets a pre-specified size criteria
 - More consistent but less temporally accurate

Defining Date of Recurrence

• We suggest that findings should not be backdated

Future Radiologic Contributions

The future

- Computer revolution
 - Radiogenomics
 - Artificial intelligence
 - Big data and deep learning
- Optimization of current techniques
 - DWI
 - DCE imaging
 - Lymphotropic nanoparticle enhanced MRI (superparamagnetic iron oxide)
- Novel imaging agents
 - ⁶⁴Cu-TP3805 PET-CT (VPAC receptors)

Thank you

Questions?

